Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
2.
BMC Anesthesiol ; 21(1): 155, 2021 05 20.
Article in English | MEDLINE | ID: covidwho-1238704

ABSTRACT

BACKGROUND: The surge of critically ill patients due to the coronavirus disease-2019 (COVID-19) overwhelmed critical care capacity in areas of northern Italy. Anesthesia machines have been used as alternatives to traditional ICU mechanical ventilators. However, the outcomes for patients with COVID-19 respiratory failure cared for with Anesthesia Machines is currently unknow. We hypothesized that COVID-19 patients receiving care with Anesthesia Machines would have worse outcomes compared to standard practice. METHODS: We designed a retrospective study of patients admitted with a confirmed COVID-19 diagnosis at a large tertiary urban hospital in northern Italy. Two care units were included: a 27-bed standard ICU and a 15-bed temporary unit emergently opened in an operating room setting. Intubated patients assigned to Anesthesia Machines (AM group) were compared to a control cohort treated with standard mechanical ventilators (ICU-VENT group). Outcomes were assessed at 60-day follow-up. A multivariable Cox regression analysis of risk factors between survivors and non-survivors was conducted to determine the adjusted risk of death for patients assigned to AM group. RESULTS: Complete daily data from 89 mechanically ventilated patients consecutively admitted to the two units were analyzed. Seventeen patients were included in the AM group, whereas 72 were in the ICU-VENT group. Disease severity and intensity of treatment were comparable between the two groups. The 60-day mortality was significantly higher in the AM group compared to the ICU-vent group (12/17 vs. 27/72, 70.6% vs. 37.5%, respectively, p = 0.016). Allocation to AM group was associated with a significantly increased risk of death after adjusting for covariates (HR 4.05, 95% CI: 1.75-9.33, p = 0.001). Several incidents and complications were reported with Anesthesia Machine care, raising safety concerns. CONCLUSIONS: Our results support the hypothesis that care associated with the use of Anesthesia Machines is inadequate to provide long-term critical care to patients with COVID-19. Added safety risks must be considered if no other option is available to treat severely ill patients during the ongoing pandemic. CLINICAL TRIAL NUMBER: Not applicable.


Subject(s)
Anesthesiology/instrumentation , COVID-19/epidemiology , COVID-19/therapy , Critical Illness/epidemiology , Critical Illness/therapy , Respiration, Artificial/instrumentation , Aged , Female , Humans , Italy/epidemiology , Male , Middle Aged , Respiration, Artificial/methods , Retrospective Studies
3.
Paediatr Anaesth ; 30(11): 1269-1274, 2020 11.
Article in English | MEDLINE | ID: covidwho-955522

ABSTRACT

BACKGROUND: During the coronavirus pandemic, preventing contamination of the anesthesia machine, critical to avoid cross-contamination between patients, has proven challenging when treating premature infants and neonates. While attaching a HEPA filter to the endotracheal tube will protect the anesthesia machine and the gas sampling line from contamination, this contribution to the dead space makes ventilation of these small patients challenging. Direct filtration of the gas sampling line eliminates this problem; however, appropriate filters are not readily available. AIMS: Identify a small filter capable of filtering out particles of a size similar to the SARS-CoV-2 virus for the gas sampling line. METHODS: We used fluorescence microspheres suspended in a solution for a challenge test to determine the filtration efficiency of various filters. The microspheres varied in diameter (0.02 µm, 0.042 µm, 0.109 µm, and 0.989 µm). A fluorescence plate reader was used to evaluate the degree of fluorescence intensity in the flow-through from various filters and referenced to the fluorescence intensity of the input. RESULTS: AHEPA filter, as recommended as an anti-viral filter, effectively filtered all the particles tested. The B. Braun PERIFIX Flat Epidural Filter was the second most effective filter, filtering particles larger than 0.042 µm. Other filters tested did not filter fluorescence microspheres equivalent in size to a single coronavirus particle (0.07 µm). CONCLUSIONS: Although the Food and Drug Administration (FDA) has not approved the Flat Epidural Filter for use as an anesthesia machine gas filter, our simple challenge test suggests that it could be used to effectively filter the anesthesia gas sampling line.


Subject(s)
Anesthesia, Endotracheal/instrumentation , COVID-19/prevention & control , Equipment Contamination/prevention & control , Filtration/instrumentation , Microspheres , SARS-CoV-2/isolation & purification , Fluorescence , Humans , Infant , Infant, Newborn
SELECTION OF CITATIONS
SEARCH DETAIL